Genotypic and phenotypic changes in exhaustively grown cell lines from mitochondrial cytopathy patients

1998 ◽  
Vol 21 (5) ◽  
pp. 599-609 ◽  
Author(s):  
Nurjati C. Siregar ◽  
M.J. Bernadette Jean-Fran�ois ◽  
Rozanne B. Blok ◽  
Edward Byrne
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3534-3534
Author(s):  
Mohd S. Iqbal ◽  
Ken-ichiro Otsuyama ◽  
Karim Shamsasenjan ◽  
Saeid Abroun ◽  
Jakia Amin ◽  
...  

Abstract Human myeloma cells have the marked phenotypic heterogeneity of surface marker expressions, possibly because of loss of PAX-5 expression. Especially, ectopic expression of CD56, one of non-B cell lineage markers, is frequently detected on primary myeloma cells from more than 80% patients with overt myeloma. However, only 2 (NOP2 and AMO1) out of 10 myeloma cell lines were CD56(+). In primary myeloma cells as well as CD56(−) myeloma cell lines, the treatment with forskolin could induce the expression of CD56 in the in vitro culture. In most CD56(+) primary myeloma cells as well as myeloma cell lines, the expressions of neuronal cell markers such as neuron specific enolase (NSE), nestin, β-tubulin III or chromogranin A were found coincidentally. By gene expression profiling, CD56(+) myeloma cell lines showed the marked expressions of transcription factors involved in neuronal cell lineage. On the other hand, addition of IL-6 down-regulated the expression of CD56 in CD56(+) myeloma cell lines in the in vitro culture. In 13 out of 60 patients with overt myeloma, these myeloma cells showed CD56(−) and their values of plasma CRP were significantly increased and MPC-1(−)CD45(+) immature myeloma cells were also increased compared to those in CD56(+) myeloma cases. Therefore, these results indicate that the expression of CD56 is possibly due to phenotypic changes into neuronal cell lineage, and IL-6 can block these phenotypic changes, keeping PAX-5(−) myeloma cells being uncommitted cells to any lineage.


Cytometry ◽  
1988 ◽  
Vol 9 (4) ◽  
pp. 374-379 ◽  
Author(s):  
Marien J. Zanyk ◽  
Diponkar Banerjee ◽  
David L. McFarlane

2021 ◽  
Author(s):  
Goran Kaluđerović ◽  

Free Ph3Sn(CH2)nOH (n = 3, 4, 6, 8 and 11) and immobilized organotin(IV) compounds, SBA- 15~Cl|Ph3Sn(CH2)nOH, were prepared and tested against different tumor cell lines. Both compounds and nanomaterials revealed strong cytotoxic potential. SBA-15~Cl|Ph3Sn(CH2)3OH as well as free compound induce caspase triggered apoptosis in human ovarian A2780 cells. Ph3Sn(CH2)6OH and corresponding nanomaterial induced apoptosis in mouse melanoma B16 cells. Survived clones of B16 cells demonstrated phenotypic changes, they differentiate toward melanocytes.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1017-1025
Author(s):  
R O'Connor ◽  
T Torigoe ◽  
JC Reed ◽  
D Santoli

We have previously reported the establishment of an interleukin-3 (IL- 3)-dependent and phenotypically myeloid cell line (TALL-103/3), obtained by culturing cells from an immature T-lymphoblastic leukemia in the presence of IL-3. These cells differentiated into a T-lymphoid cell line (TALL-103/2) upon removal of IL-3 and incubation in IL-2. Despite the different phenotype, the two cell lines remained karyotypically and genotypically identical. Here, we have analyzed the phenotypic changes and the signaling events induced by these two lymphokines in TALL-103/3 cells by switching them to temporary growth in IL-2 and returning them to IL-3. All four sublines obtained (the myeloid in IL-3 and the lymphoid in IL-2) expressed RNA for CD3, IL-2 receptor (R) alpha, and T-cell receptor (TCR)-gamma and -delta chains. However, cells cultured in IL-3 failed to express detectable levels of the IL-2R beta chain at both the protein and RNA levels, whereas cells exposed to IL-2 always expressed IL-2R beta. In parallel with the changes in IL-2R beta expression, the SRC-like protein tyrosine kinase (PTK) p56 LCK could not be detected in IL-3-dependent cells, but was abundant in the IL-2-dependent cells and underwent markedly increased autophosphorylation in response to IL-2. In contrast, p53/p56 LYN was highly expressed in IL-3-dependent cells, and greatly decreased when these cells were switched to growth in IL-2. LYN kinase autophosphorylation modestly increased in response to IL-3. None of the other kinases in the SRC family that were tested underwent increased autophosphorylation after lymphokine stimulation, indicating the specificity of IL-2 for LCK and of IL-3 for LYN. The TALL-103 cell lines provide a unique system to study the interaction between lymphokines and SRC-family PTKs in signal transduction pathways leading to hematopoietic cell differentiation.


2021 ◽  
Vol 123 (6) ◽  
pp. 151768
Author(s):  
Bryan Ôrtero Perez Gonçalves ◽  
Gabryella Soares Pinheiro dos Santos ◽  
Warne Pedro de Andrade ◽  
Sílvia Ligório Fialho ◽  
Dawidson Assis Gomes ◽  
...  

2021 ◽  
Vol 271 ◽  
pp. 116379
Author(s):  
Junkai Xie ◽  
Li Lin ◽  
Oscar F. Sánchez ◽  
Chris Bryan ◽  
Jennifer L. Freeman ◽  
...  

Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1017-1025 ◽  
Author(s):  
R O'Connor ◽  
T Torigoe ◽  
JC Reed ◽  
D Santoli

Abstract We have previously reported the establishment of an interleukin-3 (IL- 3)-dependent and phenotypically myeloid cell line (TALL-103/3), obtained by culturing cells from an immature T-lymphoblastic leukemia in the presence of IL-3. These cells differentiated into a T-lymphoid cell line (TALL-103/2) upon removal of IL-3 and incubation in IL-2. Despite the different phenotype, the two cell lines remained karyotypically and genotypically identical. Here, we have analyzed the phenotypic changes and the signaling events induced by these two lymphokines in TALL-103/3 cells by switching them to temporary growth in IL-2 and returning them to IL-3. All four sublines obtained (the myeloid in IL-3 and the lymphoid in IL-2) expressed RNA for CD3, IL-2 receptor (R) alpha, and T-cell receptor (TCR)-gamma and -delta chains. However, cells cultured in IL-3 failed to express detectable levels of the IL-2R beta chain at both the protein and RNA levels, whereas cells exposed to IL-2 always expressed IL-2R beta. In parallel with the changes in IL-2R beta expression, the SRC-like protein tyrosine kinase (PTK) p56 LCK could not be detected in IL-3-dependent cells, but was abundant in the IL-2-dependent cells and underwent markedly increased autophosphorylation in response to IL-2. In contrast, p53/p56 LYN was highly expressed in IL-3-dependent cells, and greatly decreased when these cells were switched to growth in IL-2. LYN kinase autophosphorylation modestly increased in response to IL-3. None of the other kinases in the SRC family that were tested underwent increased autophosphorylation after lymphokine stimulation, indicating the specificity of IL-2 for LCK and of IL-3 for LYN. The TALL-103 cell lines provide a unique system to study the interaction between lymphokines and SRC-family PTKs in signal transduction pathways leading to hematopoietic cell differentiation.


2004 ◽  
Vol 94 (3) ◽  
pp. 261-265 ◽  
Author(s):  
Eva Stodůlková ◽  
Petr Man ◽  
Jan Pohl ◽  
Dung Van Nguyen ◽  
Silvie Vaingátová ◽  
...  
Keyword(s):  
Hla B27 ◽  

Sign in / Sign up

Export Citation Format

Share Document